Examples of input and output files of "Visual EPR"

  1. File system for View_spc
  2. Output files of View_spc
  3. Input file for Energy, Fields, Powder
  4. Output files of Fields
  5. Output files of Energy
  6. Output files of Powder
  7. Input file for Params
  8. Output files of Params
  9. Input file for FIntgraf
  10. .Output files of FIntGraf

File system for View_spc

1. We use flexible BRUKER conception for spectrum files.
Each spectrum has file with intensity data and file with spectrum parameters;
both files have the same name, but different extensions ("*.spc" and "*.par").
For additional information (for instance, for the positions of spectrum peaks) corresponding files with another extensions can be created.

2. Reserved extensions of spectrum files:
Algebraic spectrum                                  *.spa,
spectrum with corrected Baseline            *.spb,
spectrum in "byte" (Bruker) format          *.spc,
spectrum Derivative in original format    *.spd,
spectrum after resolution Enhancement    *.spe,
Filtered spectrum in original format        *.spf,
Integrated spectrum in original format     *.spi,
spectrum in "Single" (DOS) format         *.sps,
spectrum in XY-ASCII format                 *.spx,
spectrum in Y-ASCII format                    *.spy.

Corresponding extensions of peaks-files are "*.pk" + last letter of spectrum file.

3. View_Spc supports the following formats of spectrum data:
- binary "Byte" format of "*.spc"-file with spectrum intensity values only - original format of spectrum file for Bruker equipment;
- binary single (or DOS) format of "*.spc"-file with spectrum intensity values only - format of high dynamic diapason (it is used by many programs, including Bruker's WIN_EPR);
- Y-ASCII format of "*.spc"-file with spectrum intensity values only;
- XY-ASCII format of "*.spc"-file - two columns with the values of X and Y coordinate of the spectrum (magnetic field and intensity or frequency and intensity).
Two last formats are convenient for using in all powerful graphical programs (ORIGIN, GRAPHER,...).

To convert spectrum data from one format to another, you should just read the spectrum and save it in desirable format!

4. Reserved words for spectrum parameters in "*.par" file (for the case, if you will type it manually):
CRYSTAL
%STOICH.
DEFECT
%DEFECT
THETA
PHI
TEMP_K
COMMENT
ns1(ENDOR)
ns2(ENDOR)

Only first 4 characters are used for parameter identification.

Back to Top

Output files of View_spc

In View_spc you can create a lot of useful files with extracted or additional information.

1. "*.pk?" file with the positions of spectrum peaks.

2. Several derivative of original spectrum files:
Algebraic spectrum                                    *.spa,
spectrum with corrected Baseline              *.spb,
spectrum Derivative in original format      *.spd,
spectrum after resolution Enhancement      *.spe,
Filtered spectrum in original format          *.spf,
Integrated spectrum in original format       *.spi.

3. "*.gr?"- special file with the dependency of line characteristics on any of spectrum parameters for all selected spectra in the chosen directory.
It collects positions, width and intensities of the lines from "*.pk?"-files and values of spectrum parameters from "*.par"-files and prepares the file with sorted data, which you can see and analyze with the help of  FIntGraf  program.
The main destination of the procedure - to obtain "*.grt"-file with angular dependency of spectra ("Road map"), but you can built also dependencies on microwave power, temperature and so on ("*.grv"-files).
In "View/Limits..." dialog you can state limits for numerical and text parameters for the spectra: if selected parameter for a "*.par"-file is inside of chosen limits, the corresponded "*.pkc" and "*.par" files are treated, if not - are ignored.

4. "*.gvp"-special file with all parameters of all spectra in the chosen directory. You can use this procedure for the control of  treated spectra or for other purposes.

Back to Top

Input file for Energy, Fields, Powder

Common input file for these programs (with the extension "gfd") has to contain the next data:

Axial center with S=3/2. ZX plane.        Name of the example
2
                Form of file output
9000.00     Microwave frequency, MHz
0.000         Minimal field, mT
1000.000   Maximal field, mT
10.000       Starting step for resonance field calculation, mT
0.01000     Intensity level
1                Quantity of equivalent centers
0.00 0.00 0.00     Euler angles for the center 1
6: C3, S6   Point symmetry group
1                Quantity of particles
              Spin(s) of the particle(s)
2                Number QXI of SH parameters for particle 1
1 10           NI for particle 1
Y                Are G and HFI the irreducible (Y) or Cartesian (N) tensors?
| Spin-Hamiltonian parameters for particle number 1 :
2.00000     G00
4000.000   b20
| Theta1 dTheta Theta2 Phi1 dPhi Phi2
  0.00     2.00     90.00    0.00  5.00  0.00
G               Common line shape: Gaussian (G) or Lorentzian (L)
Y                Take into account the level populations (Y) or not (N)
Y                Normalize (Y) or not (N) the line intensities
1                Common line form (original or derivatives)
20.000       Common width of individual line, mT
10.000       Temperature in Boltzmann factors, K
10.000       Temperature To in normalizing factor (2kTo/hv), K
320            Number of magnetic field directions for spiral rotation
7                Number of MW field orientations for intensity average

Back to Top

Output file of Fields

An example of output "*.grt" file of Energy or Fields programs (i.e. Input file for FIntgraf):

같같같같같같같같같같같같같같같같같같
Axial center with S=3/2. ZX plane. "C3A.GFD".
Theta, deg
Magnetic field, mT
Intensity
    9000.00 EPR Microwave frequency, MHz
---------------------------------------------------------------------------------
Theta,degr. Phi,degr. Fields,mT Intens. Center  ns1   ns2 Q tr. sLope Mwo ---------------------------------------------------------------------------------
    0.00         0.00       321.515     4.00          1      2      1     3      0.93      0
    0.00         0.00       535.266     3.00          1      2      1     3      0.93      0
    2.00         0.00       320.828     4.04          1      2      1     6      0.94      0
    2.00         0.00       537.999     3.01          1      2      1     5      0.92      0
    2.00         0.00       589.859     0.04          1      3      2     5      1.86      0
    4.00         0.00       267.992     0.03          1      3      2     5      1.86      0
    4.00         0.00       318.815     4.16          1      2      1     6      0.94      0
    4.00         0.00       546.473     3.04          1      2      1     6      0.88      0
    4.00         0.00       591.934     0.15          1      3      2     6      1.84      0
---------------------------------------------------------------------------------

Output "*.grm" file contain angular dependencies in three perpendicular planes ZX, XY, YZ - road map.

Back to Top

Output files of Energy

In addition to output "*.grt"-file (see Output files of Fields) the program can create detailed "*.geh" file with the positions of energy levels and corresponding wave functions.

Back to Top

Output file of Powder

POWDER program can creates:
"*.grv" - file with angular dependencies of resonance magnetic fields for spiral rotation;
"*.spy" and "*.par" - files with simulated powder spectrum and it parameters

Back to Top | Home

Input file for Params

Input file for Params (with the extension "gpd") has to contain the next data:

Test for axial center with S=3/2.  Name of example
1
                Form of file output
9400.00     Microwave frequency, MHz
3                Iteration quantity admitted
1.00            Experiment accuracy, mT
2.0000       Required precision of unknown parameter determination, 10-4 cm-1
0.01000     Intensity level
1                Quantity of equivalent centers
0.00 0.00 0.00     Euler angles for the center 1
6: C3, S6   Point symmetry group
1                Quantity of particles
              Spin(s) of the particle(s)
2                Number QXI of SH parameters for particle 1
1 10           NI for particle 1
1 2             Numbers of unknown parameters
Y                Are G and HFI the irreducible (Y) or Cartesian (N) tensors?
| Started values of spin-Hamiltonian parameters
| H*S and CF (10-4 cm-1) for particle 1:
2.00000     G00
4000.000   b20
0                 Form of function minimized
1                 Number of minimization method
| Will you input (Y/N) additional information about:
Y                line intensity
N               line width
N                center number
N                numbers of levels
---------------------------------------
  Theta     Phi        Field        Intens.
---------------------------------------
    0.00     0.00     336.67      9.00
    4.00     0.00     337.37      9.10
    8.00     0.00     339.48      9.20
  12.00     0.00     342.96      9.30
...
---------------------------------------

Back to Top

Output file for Params

The file with the extension "gpr" has input data of your task and results of fitting:
parameters of spin-Hamiltonian with corresponding estimation of "error bars".

Back to Top

Input file for FIntgraf

Data file for FIntGraf has simple structure:
All strings before "같같같" are ignored ( - is "Alt+_).
First string after "같같같" is used as "Name of example".
Second string is name of the argument. If the first letters of argument is "T" or "t" the values of angles "Theta" from table of data will be used, else - angles "Phi".
Third string contain the name of the function.
Fourth string is name of third characteristic of spectra. Usually it is the intensity of lines.
On the fifth string the frequency at which were observed or for which were calculated these spectra must be present. It is needed for estimation of effective g-factor values for any points on screen.
6-th and 8-th strings are special delimitors.
7-th string contain full information about data in the table (descriptor string). Capital letters of descriptors on this string is analized, after that corresponding to descriptors values are read from the table of data.
Each string of data must be begin with "blank"; in another case an information on this string is ignored as commentary.
Last string of file is again delimitor (mark of end of data file). Short example of *.grt-file:

같같같
New axial center Fe3+ in BaTiO3.
Theta, degr.
Magnetic field, mTl
Intensity
9049.30 Microwave frequency, MHz
=========================================
Theta,degr. Phi,degr. Fields Intens. Center ns1 ns2 Width
=========================================
    0.00         0.00      124.90     0.12     1        5     3      3.74
    0.00         0.00      185.64     8.24     1        5     4      0.95
    0.00         0.00      135.84     5.16     2        6     5      0.95
    0.00         0.00      500.69     5.16     2        2     1      0.95
    5.00         0.00      136.30     5.14     1        6     5      0.95
    5.00         0.00      187.11     8.24     1        5     4      0.95
    5.00         0.00      320.13     9.15     2        4     3      0.95
==========================================

Back to Top

Output files of FIntgraf

The program allows you to manipulate on graphic screen with the data of "*.grt"-files.
It can extract all visible on the screen points - position of resonance fields (or frequences) with corresponding angles, intensities and widths - from one or several input files and put them in one special file.
It can extract also only points selected manually with the help of the mouse.
It allows to delete coinciding points of two graphics, i.e. "subtract" from file A those resonance fields, which are close to the fields in file B. For example, you can delete from the file with experimental angular dependencies all resonance fields, which close to theoreticaly calculated ones!
You can shift your data in X- or Y-directions (field/frequence or angle), erase artefacts or noices and so on. Results of all these manipulations you will see on the screen and can save in special "*.grt"-file.

Back to Top

Copyright V.Grachev. All rights reserved.
Revised: April 17, 2010.